Topics

- Discrete Fourier Transform (DFT)
- Fast Fourier Transform (FFT)
- Applications of FFT
- CUFFT, DCT8x8
Discrete Fourier Transform

- Fourier Transform: represent a signal (function) as a linear sum of sines/cosines.
Discrete Fourier Transform

- Fourier Transform: represent a signal (function) as a linear sum of sines/cosines.
- Discrete Fourier Transform:
 - N input real/complex numbers → N output, complex numbers

\[
X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N} k n} \quad k = 0, 1, 2, \ldots, N-1
\]

\[i = \sqrt{-1}\]
Discrete Fourier Transform

- Fourier Transform: represent a signal (function) as a linear sum of sines/cosines.
- Discrete Fourier Transform:
 - N input real/complex numbers \rightarrow N output, complex numbers

$$X_k = \sum_{n=0}^{N-1} x_n \omega^{kn} \quad k = 0, 1, 2, ..., N-1$$

$$\omega = e^{-\frac{2\pi i}{N}} \quad \text{Nth root of unity}$$
Discrete Fourier Transform

- Discrete Fourier Transform:
 - N input real/complex numbers \rightarrow N output, complex numbers
 - We can think of this as a basis projection
 - Orthogonal basis set, energy conservation

$$X_k = \sum_{n=0}^{N-1} x_n \omega^{kn} \quad k = 0, 1, 2, \ldots, N - 1$$

$$\omega = e^{-\frac{2\pi i}{N}} \quad \text{Nth root of unity}$$
Discrete Fourier Transform

- Inverse Discrete Fourier Transform:

\[x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{2\pi i}{N} k n} \quad n = 0, 1, 2, \ldots, N-1 \]
Fast Fourier Transform

- Direct Computation: $O(N^2)$
- Fast Fourier Transform (FFT): $O(N \log N)$
 - Many different algorithms
 - We will focus on Cooley-Tukey algorithm
 - Basically a divide and conquer algorithm
Fast Fourier Transform

- Repeatedly divide an N point DFT to two N/2 FFTs:

\[X_k = \sum_{n=0}^{N-1} x_n \omega^{kn} \]
Fast Fourier Transform

- Repeatedly divide an N point DFT to two N/2 FFTs:

\[
X_k = \sum_{n=0}^{N-1} x_n \omega^{kn}
\]

\[
= \sum_{m=0}^{N/2-1} x_{2m} \omega^{2mk} + \sum_{m=0}^{N/2-1} x_{2m+1} \omega^{(2m+1)k}
\]
Fast Fourier Transform

- Repeatedly divide an N point DFT to two N/2 FFTs:

\[X_k = \sum_{n=0}^{N-1} x_n \omega^{kn} \]

\[= \sum_{m=0}^{N/2-1} x_{2m} \omega^{2mk} + \sum_{m=0}^{N/2-1} x_{2m+1} \omega^{(2m+1)k} \]

\[= \sum_{m=0}^{N/2-1} x_{2m} (\omega^2)^k m + \omega^k \sum_{m=0}^{N/2-1} x_{2m+1} (\omega^2)^km \]
Fast Fourier Transform

- Sequential algorithm: (recursive)

```
1. procedure R_FFT(X, Y, n, ω)
2. if (n = 1) then Y[0] := X[0] else
3. begin
4.   R_FFT((X[0], X[2], ..., X[n - 2]), (Q[0], Q[1], ..., Q[n/2]), n/2, ω^2);
5.   R_FFT((X[1], X[3], ..., X[n - 1]), (T[0], T[1], ..., T[n/2]), n/2, ω^2);
6.   for i := 0 to n - 1 do
7.       Y[i] := Q[i mod (n/2)] + ω^i T[i mod (n/2)];
8. end R_FFT
```
Fast Fourier Transform

- Complexity: $O(N \log N)$
- Parallel Implementation: similar to a sorting network
Fast Fourier Transform

- Applications of FFT:
 - Spectral Analysis
 - Data Compression
 - Partial Differential Equation (PDE)
 - Large-scale convolution
 - Convolution Theorem
Fast Fourier Transform

- CUFFT
- DCT8x8 (CUDA SDK)