Lecture 15: Sorting

Rui Wang
Topics

- Radix Sort
- Bitonic Sort
 - Bitonic Sequence
 - Bitonic Split
 - Bitonic Merge
- Complexity
- Odd-even Sort
Radix Sort

- Assume all elements have the same number \((n) \) of bits
- Perform 0-1 split \(n \) times, starting from the lowest bit
 - Split is computed using scan.
 - **Important**: order within group preserved.
- Example:

 \[
 \begin{array}{cccccccc}
 5 & 7 & 3 & 1 & 4 & 2 & 7 & 2 \\
 101 & 111 & 011 & 001 & 100 & 010 & 111 & 010 \\
 \end{array}
 \]

- Works well for integer numbers (32-bit requires 32 splits)
Radix Sort

- What about FP numbers?
 - IEEE 754 Standard
 - For positive FP numbers, radix sort still works.
    ```c
    float number;
    *(unsigned int*)(&number);
    ```
 - Negative FP numbers are more complicated.
Bitonic Sort

- **Bitonic Sequence**: a sequence of elements

\[\langle a_0, a_1, a_2, \ldots a_{n-1} \rangle \]

that looks like this:

including the degenerate and cyclic shift cases.
Bitonic Sort

- **Bitonic Sequence:** here we will focus on bitonic sequences

 \[\langle a_0, a_1, a_2, \ldots a_{n-1} \rangle \]

 where the **left half** is non-decreasing, and the **right half** is non-increasing; or the reverse.
Bitonic Sort

- **Bitonic Split**: compare each element in the first half to its corresponding element in the second half, and swap in increasing order.

\[
\begin{align*}
\alpha_i &= \min(\alpha_i, \alpha_{i+n/2}) \\
\alpha_{i+n/2} &= \max(\alpha_i, \alpha_{i+n/2})
\end{align*} \quad i \in [0, \frac{n}{2} - 1]
\]
Bitonic Sort

- **Bitonic Split:** compare each element in the first half to its corresponding element in the second half, and swap in increasing order.

\[
a_i = \min\left(a_i, a_{i+n/2} \right) \quad i \in [0, \frac{n}{2} - 1]
\]

\[
a_{i+n/2} = \max\left(a_i, a_{i+n/2} \right)
\]
Bitonic Sort

- **Bitonic Split**: compare each element in the first half to its corresponding element in the second half, and swap in increasing order.
- This results in two sub-sequences that are both *bitonic*, and the first sub-sequence is *smaller* than the second.

Why true?
Bitonic Sort

- **Bitonic Split**: compare each element in the first half to its corresponding element in the second half, and swap in increasing order.

- This results in two sub-sequences that are both bitonic, and the first sub-sequence is smaller than the second.

\[a_0 \quad a_{n-1} \quad a_0 \quad a_{n-1} \]

Same here
Bitonic Sort

- **Bitonic Merge:** Repeatedly apply bitonic split on each sub-sequence, until the sub-sequence is only 1 element wide.

Now we have a method to sort a bitonic sequence!
Bitonic Sort

- **Bitonic Merge**: Repeatedly apply bitonic split on each sub-sequence, until the sub-sequence is only 1 element wide.

- Example:

 \[[3 \ 8 \ 10 \ 14 \ 20 \ 18 \ 9 \ 0] \]
Figure 9.6 A bitonic merging network for $n = 16$. The input wires are numbered 0, 1, ..., $n - 1$, and the binary representation of these numbers is shown. Each column of comparators is drawn separately; the entire figure represents a \oplusBM[16] bitonic merging network. The network takes a bitonic sequence and outputs it in sorted order.
Bitonic Sort

- **Bitonic Merge**: Repeatedly apply bitonic split on each sub-sequence, until the sub-sequence is only 1 element wide.

- Example:

 \[3 \quad 8 \quad 10 \quad 14 \quad 20 \quad 18 \quad 9 \quad 0\]

- Complexity?

 K processors sort k elements in parallel:
Bitonic Sort

- **Bitonic Merge**: Repeatedly apply bitonic split on each sub-sequence, until the sub-sequence is only 1 element wide.

- Example:

 \[
 \begin{bmatrix}
 3 & 8 & 10 & 14 & 20 & 18 & 9 & 0 \\
 \end{bmatrix}
 \]

- Complexity?

 \(K\) processors sort \(k\) elements in parallel: \(\log(k)\)

 What about sequential (1 processor)? Compare with standard merge sort.
Bitonic Sort

- **Bitonic Merge**: Repeatedly apply bitonic split on each sub-sequence, until the sub-sequence is only 1 element wide.
- Example:

 \[3 \ 8 \ 10 \ 14 \ 20 \ 18 \ 9 \ 0\]

- Bitonic merge is similar to qsplit in quicksort, but has the bitonic constraints.
- What about a completely unsorted sequence?
 - Build bitonic sequences from bottom up
 - You will see how this is similar to standard merge sort.
Bitonic Sort

- Bitonic Sort:
Bitonic Sort

- Bitonic Sort:
Bitonic Sort

- Bitonic Sort:
Figure 9.8 The comparator network that transforms an input sequence of 16 unordered numbers into a bitonic sequence. In contrast to Figure 9.6, the columns of comparators in each bitonic merging network are drawn in a single box, separated by a dashed line.
Bitonic Sort

for (unsigned int k = 2; k <= NUM; k *= 2) {

 // Bitonic merge:
 for (unsigned int j = k / 2; j>0; j /= 2) {

 unsigned int ixj = tid ^ j;

 // Bitonic split:
 if (ixj > tid) {

 if ((tid & k) == 0) {

 if (shared[tid] > shared[ixj]) swap(shared[tid], shared[ixj]);

 } else {

 if (shared[tid] < shared[ixj]) swap(shared[tid], shared[ixj]);

 }

 }

 __syncthreads();
 }
}
Bitonic Sort

• Complexity?
 • Parallel (n processors sort n elements):
Bitonic Sort

- Complexity?
 - Parallel (n processors sort n elements):
 \[O(\log^2(n)) \]
 - Sequential (1 processor sort n elements):
 \[O(n \log^2(n)) \]
Odd-Even Sort

Unsorted

3 2 3 8 5 6 4 1
2 3 3 8 5 6 1 4
2 3 3 5 8 1 6 4
2 3 3 5 1 8 4 6
2 3 3 1 5 4 8 6
2 3 1 3 4 5 6 8
2 1 3 3 4 5 6 8
1 2 3 3 4 5 6 8

Sorted

1 2 3 3 4 5 6 8

Figure 9.13 Sorting $n = 8$ elements, using the odd-even transposition sort algorithm. During each phase, $n = 8$ elements are compared.
Odd-Even Sort

- Complexity?
 - Parallel (n processors sort n elements):
 \[O(n) \]
 - Sequential (1 processor sort n elements):
 \[O(n^2) \]
Sort Large Arrays

• **Strategy 1: top-down**
 • Quick sort or bucket sort to partition large array into smaller sub-arrays, such that each sub-array can fit in one SM.

• **Strategy 2: bottom-up**
 • Merge sort or bitonic sort to form sorted sub-arrays, then use global merge sort.

• **Strategy 3: Global radix sort**