Terms you should know...

- Host → CPU
- Device → GPU
- PCI: Peripheral Component Interconnect
- PCI-E (PCle): PCI Express
- SIMD: Single Instruction, Multiple Data
Taxonomy of Parallel Architecture

- Flynn's Taxonomy
Taxonomy of Parallel Architecture

- SIMD
 - SSE
 - GPU
 - ...

Wikipedia
Taxonomy of Parallel Architecture

- **MIMD**
 - Shared Memory Model
 - SMP
 - NUMA
 - Distributed Memory Model
 - MPP
 - Clusters
- Hybrid
- Grid
- ...

Wikipedia
Taxonomy of Parallel Architecture

- **MIMD**
 - Shared Memory Model
 - SMP
 - NUMA
 - Distributed Memory Model
 - MPP
 - Clusters
- Hybrid
- Grid
- ...
Amdahl's Law

- The speedup you can gain is limited by the portion that requires sequential computation.
 - Let P be the portion that can be parallelized, S be the speedup of the parallel portion.
 - Overall speedup: $\frac{1}{(1-P)+\frac{P}{S}}$
 - Maximum speedup is limited to $\frac{1}{1-P}$ even if S is infinity.
- A problem where $P=100\%$ is called embarrassingly parallel.
Taxonomy of Parallel Architecture

- GPU is a SIMD device, works on “streams” of data.
- Each “stream processor” executes one general instruction on the stream of data that it is assigned to handle.
- Executes many threads in parallel
 - Called SIMT (Single Instruction Multiple Threads) by NVIDIA
PC Architecture

- Northbridge → Memory Controller Hub (MCH)
- Southbridge → I/O Controller Hub (ICH)
PC Architecture

- Example:

http://courses.ece.uiuc.edu/ece498/al/lectures/
PCI Express (PCI-E)

- Switched, Serial, P2P link
- Each card has a dedicated link to the central switch, no bus arbitration.
PCI Express (PCI-E)

- Each link is duplex
- PCIe 1.0: 250 MB/s per link each direction
- Can have multiple links: x1, x2, x4, x8, x16
- Therefore 4GB/s each direction for x16
- PCIe 2.0: 500 MB/s
- 3.0: 1 GB/s

http://courses.ece.uiuc.edu/ece498/al/lectures/
PCI Express (PCI-E)

- PCIe forms the interconnect backbone

http://courses.ece.uiuc.edu/ece498/al/lectures/
GPU

- The GPU is connected to the CPU PCIe x16
 - The idea is to use the GPU as a co-processor
 - Dispatch big parallelizable tasks to the GPU
 - Keep the CPU busy with the control of the execution
 - No direct access to CPU memory or devices
GPU

http://www.beyond3d.com/content/reviews/1/3
GPU

- NVIDIA GeForce 8 Series, 9 Series
 - Duel GPU: 9800 GX2, 295
- 200 Series
 - Double precision: 285, 295
- NVIDIA Tesla
Modern GPU Architecture

G80
Modern GPU Architecture

Texture Processor Cluster

Stream Multiprocessor

- Instruction L1
- Data L1
- Instruction Fetch/Dispatch
- Shared Memory
- SFU
- SP

TPC

SM

TEX

SM

SFU

SP
Modern GPU Architecture
Modern GPU Architecture
GPU

- One Stream Processor Array (SPA)...
 - Which has a collection of Texture Processor Clusters (8 in 8000 series and 10 in 200 series)
 - Each TPC has two or three Stream Multiprocessors (SM)
 - Each SM is made up of eight Scalar Processor (SP), and has its own shared memory space
 - Each SP has a multiply-add (MAD) unit, and an additional multiply (MUL) unit
 - There are also special function units (SFU) that perform FP functions such as SQRT, RCP SQRT etc.
Modern GPU Architecture

200 Series
Modern GPU Architecture
Debugging with Device Emulate Mode

- An executable compiled in device emulate mode runs completely on the CPU using the CUDA runtime
 - *nvcc ... -deviceemu*
 - No need for a CUDA-enabled GPU
 - Each thread emulated by a CPU thread (slow)

- Advantages
 - Debugging support
 - Access device-specific data
 - Call host functions (such as printf)
Compiling with nvcc

- PTX: Parallel Thread Execution